Random Forest Algorithm-Based Lightweight Comprehensive Evaluation for Wireless User Perception
نویسندگان
چکیده
منابع مشابه
A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کاملDiagnosis of Diabetes Using a Random Forest Algorithm
Background: Diabetes is the fourth leading cause of death in the world. And because so many people around the world have the disease, or are at risk for it, diabetes can be called the disease of the century. Diabetes has devastating effects on the health of people in the community and if diagnosed late, it can cause irreparable damage to vision, kidneys, heart, arteries and so on. Therefore, it...
متن کاملLightweight User Interfaces for Watch Based Displays
Ubiquitous mobile computing devices offer the opportunity to provide easy access to a rich set of information sources. Placing the display for this computing device on the user’s wrist allows for quick, easy, and pervasive access to this information. In this paper we describe a user interface model and a set of five applications we have developed, with the aim of providing a user interface that...
متن کاملRandom Forest Algorithm for Land Cover Classification
Since the launch of the first land observation satellite Landsat-1 in 1972, many machine learning algorithms have been used to classify pixels in Thematic Mapper (TM) imagery. Classification methods range from parametric supervised classification algorithms such as maximum likelihood, unsupervised algorithms such as ISODAT and k-means clustering to machine learning algorithms such as artificial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2956285